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Abstract

Objective: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tion using artificial intelligence applied to the electrocardiogram (ECG).
Methods: A global, volunteer consortium from 4 continents identified patients with ECGs obtained
around the time of polymerase chain reaction—confirmed COVID-19 diagnosis and age- and
sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction
results, and raw electrocardiographic data were collected. A convolutional neural network
was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3%
positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under
different prevalence values was tested by adding control ECGs from a single high-volume site.
Results: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767
(95% CI, 0.756 to 0.778; sensitivity, 98%,; specificity, 10%; positive predictive value, 37%; negative pre-
dictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added
to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of
0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%.
Conclusion: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the arti-
ficial intelligence—enhanced ECG to be used as a rapid screening test with a high negative predictive
value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen
individuals for pandemic control.
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he world is currently suffering from

a global pandemic caused by the

transmission of the severe acute res-
piratory syndrome coronavirus 2 (SARS-
CoV-2), resulting in coronavirus infectious
disease 19 (COVID-19). The SARS-CoV-2 vi-
rus enters cells when its spike protein binds
to angiotensin-converting enzyme 2 (ACE2)
receptors, which are richly expressed in the
heart.'” Animal data from rabbits as well
as human clinical reports indicate that the
coronavirus frequently may enter myocytes
and, by direct or indirect mechanisms,
causes myocardial inflammation, which
may in turn be reflected by nonspecific elec-
trocardiographic changes.”” Whereas the
myocardiac picture may often be subclinical,
elevated troponin levels and electrocardio-
graphic and heart rhythm changes have
been frequently observed.® "'

We have previously demonstrated that
artificial intelligence (AI) in the form of con-
volutional neural networks applied to the
electrocardiogram (ECG) can detect subtle,
subclinical patterns in an ECG to identify
the presence of occult and impending car-
diovascular diseases, including left ventricu-
lar  dysfunction, intermittent  atrial
fibrillation, and other conditions and demo-
graphic characteristics, such as age and
sex."”"” In this context, we hypothesized
that COVID infection would lead to
recognizable changes in the Al-enhanced
ECG (AI-ECG) and that absence of those
changes could exclude the presence of acute
coronavirus infection, facilitating point-of-
care screening. Given the periodic shortages
of reagents for current coronavirus genetic
screening tests, delays in obtaining results,
and associated costs, a low-cost, readily
scalable solution for rapid point-of-care

screening is  critical for  pandemic
management.
To test the hypothesis that an

electrocardiography-based test could
exclude COVID-19, a global volunteer con-
sortium was formed to gather electrocardio-
graphic and clinical data from individuals
with and without COVID-19 to build a neu-
ral network to detect infection and to make
the network widely available.

METHODS

Site Coordination

A total of 28 sites from 14 countries on 4 con-
tinents were included in this study (Figure 1;
Appendix 1, available online at http:/www.
mayoclinicproceedings.org). ~ Each  site
ensured compliance of participation in this
study, including deidentification of ECGs ac-
cording to local Institutional Review Board
policies and specific national and institutional
patient privacy guidelines. All sites were given
case report forms to complete on all cases,
with data collated in a central database
(Research  Electronic  Data  Capture
[REDCap]; Vanderbilt University).“’

Electrocardiogram Acquisition and
Aggregation

All ECGs were aggregated in their raw digital
form from local ECG servers. On identifica-
tion of cases and controls, unique identifiers
were applied to each patient at the site, and
the raw digital files were transferred to an in-
dependent, password-protected research
server at Mayo Clinic in Rochester, Minne-
sota, in FDA-XML format.

Control Population

Three control populations were used. The
first population was composed of ECGs
from COVID-positive patients that were ac-
quired more than 2 days before COVID-
positive polymerase chain reaction (PCR)
analysis. The second consisted of patients
with ECGs acquired before September
2019. This date was chosen to ensure that
the likelihood of any patient’s having been
infected with COVID-19 was negligible,
given that the first infections recorded
occurred in the timeframe of November to
December 2019 in Wuhan, China. The first
2 were used for training. The third consisted
of 50,905 ECGs from a single site obtained
before 2019. These were used to enrich the
testing data set by altering the prevalence
of COVID-19 to mirror a more general
screening setting where the test positivity
rate would be expected to be in the 5% to
10% range. All patients (outpatients and in-
patients) were included in all sets.
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FIGURE 1. Geographic distribution of enrolling sites. Shown is the geographic distribution of sites

Case Population

The case population consisted of patients with
a positive PCR test result for COVID-19. All
ECGs available both before and after diag-
nosis were included in the data transferred
from all sites. The date of each ECG and
PCR test was recorded in the case report
forms, as were the age and sex of the patient.
The ECGs acquired in the window of interest
served as positive samples, with the window
starting 2 days before the positive PCR test
result and ending 14 days after it. The ECGs
from COVID-positive patients recorded
before the window of interest were used as
controls (labeled negative samples), and
ECGs collected after the window of interest
were used for a secondary analysis. Additional
data recorded included the World Health Or-
ganization (WHO) symptom severity at the
time of initial COVID-19 symptoms, at the

date of index ECG (closest to first positive
PCR test result), at 30 days after index ECG
(which also recorded mortality status), and
at the point of most severe symptoms during
the interval between the index ECG and 30
days after the index ECG (Figure 2A). The
WHO symptom severity scale is summarized
in Table 1.

Data Quality and Model Development

Data Quality. To exclude ECGs with
extreme noise and artifacts, ECGs with a
maximum amplitude of 5 mV or more
were excluded. The ECGs with less than 10
seconds worth of data were excluded, as
were those with incorrect format or arrival
after the analysis completion date.

Model Development. Standard convolutional
neural network'>'’ and residual neural
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FIGURE 2. A, Definition of control, index case electrocardiograms (ECGs), and postinfectious ECGs included in analysis. B, Receiver
operating characteristic curves for detection of acute COVID- 19 infection from a 12-lead, 6-lead, and |-lead ECG. AUC, area under
the curve; PCR, polymerase chain reaction.
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network '~ architectures were evaluated with
multiple initial learning rates (1e-3, 3e-4) and
batch sizes (16, 32, and 64). The learning rate
was configured to decrease by a factor of 1/3 if
the model accuracy did not improve over 3
consecutive epochs. The model with the best
area under the curve (AUC) in the internal
validation set was selected as the optimal
model and tested on the holdout cohort,
composed of patients not used in model
training or validation. The model architecture
was similar to one previously reported'’
(Supplement 1, available online at http:/
www.mayoclinicproceedings.org).

To evaluate the potential for use of the
algorithm with smartphone-based form fac-
tors, we also trained models with a single
lead (lead I) and with 6 leads (all limb leads:
I, 11, III, aVF, aVR, aVL) from the 12-lead
ECG using a similar network architecture.
When the 12-lead and 6-lead inputs are
used, 4 of the leads are augmented leads
that do not contain additional information.
However, to conform to standard electrocar-
diography devices, we used all 12 leads dur-
ing the development of the networks. In
addition, we created architectures with 8
leads (that use only the independent data
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TABLE 1. World Health Organization Score

| Not hospitalized, no limitations on activities

2 Not hospitalized, limitation on activities

3 Hospitalized, not requiring supplemental oxygen

4 Hospitalized, requiring supplemental oxygen

5 Hospitalized, on noninvasive ventilation or high-flow
oxygen devices

6 Hospitalized, on invasive mechanical ventilation

7 Death

found in a 12-lead ECG) and 2 leads (to
match the independent data found in
6-lead systems) and found similar results.

Statistical Analyses

The ECGs were partitioned into 3 mutually
exclusive sets at the patient level. Model
training was conducted on the training set
and hyperparameter optimization on the
validation set. All performance measures
presented are based on the test data, which
were not used for training or optimization.
The network reports a score between 0 and
1 (0, low likelihood of infection; 1, high like-
lihood) for each ECG that is evaluated. The
AUC was the primary outcome measure
and was determined for the test cohort and
then with additional controls to assess the
impact of prevalence on test performance.
The latter represents the scenario in which
widespread testing at a lower disease preva-
lence is conducted, such as screening pa-
tients ahead of a medical evaluation or
screening asymptomatic passengers as part
of the boarding process.

Standard measures of diagnostic perfor-
mance and their associated confidence inter-
vals were computed according to the
Standards for Reporting Diagnostic Accuracy
criteria.'”'® To form decisions based on
model output, an optimal threshold was
selected to provide 99% sensitivity in the
validation data. This threshold was used for
both the test data alone (~33% COVID-19
prevalence) and the test data enriched with
additional control data (~5% COVID-19
prevalence). With this threshold, sensitivity,
specificity, positive predictive value (PPV),

and negative predictive value (NPV) were
determined.

To better understand model perfor-
mance, exploratory analyses across a few
key descriptive variables were undertaken.
First, COVID-19 prevalence was strongly
associated with heart rate. To address this,
model performance stratified by heart rate
groupings was evaluated. Second, it was hy-
pothesized that increased viral load leads to
downstream complications and would be
associated with a more pronounced electro-
cardiographic signature. To explore this
concept, we analyzed model prediction
scores according to WHO symptom severity
score and the change of scores over time in
COVID-19 patients with multiple ECGs
during follow-up. Finally, to test for an as-
sociation of model performance and the
days between the ECG acquisition and the
COVID-19 diagnosis, a linear mixed model
was used to examine the slope of the model
output over the days surrounding diagnosis.
This model included a main (fixed) effect
for days from diagnosis and a random sub-
ject effect. Confidence intervals, when pre-
sented, for measures of diagnostic
performance assume that multiple ECGs
within a patient were statistically indepen-
dent. Statistical analyses and model devel-
opment were conducted using Python
version 3.7.6 (Python Software Foundation)
and R version 3.5.2 (R Foundation for Sta-
tistical Computing).

Role of the Funding Source

The study was designed and conceived by
Mayo Clinic investigators with no financial
support from industry and made possible
through the generous contribution of data,
time, human resources, and intellectual
capital from medical centers around the
world (authors and Discover Consortium)
invited to participate (Supplement 2, avail-
able online at http//www.mayoclinic
proceedings.org). In addition, General Elec-
tric, SHL Telemedicine, Philips, and Epiph-
any  Healthcare  donated  resources,
expertise, and, in some cases, equipment
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TABLE 2. Characteristics of Patients®"<

Control (n=1420)" COVID-19 (n=982)° Total (N=2402)" P value

White .04
No 248 (52.5) 333 (58.8) 581 (56.0)
Yes 224 (47.5) 233 (41.2) 457 (44.0)

Black or African American 9l
No 212 (41.4) 244 (41.1) 456 (41.2)
Yes 300 (58.6) 350 (589) 650 (58.8)

Asian 15
No 363 (94.3) 450 (96.4) 813 (954)
Yes 22 (5.7) 17 (3.6) 39 (4.6)

Native Hawaiian or Pacific Islander 37
No 377 (100.0) 462 (99.8) 839 (99.9)
Yes 0 (0.0) I (02) I (0.1)

Other race 94
No 317 (81.5) 384 (81.7) 701 (81.6)
Yes 72 (18.5) 86 (18.3) 158 (18.4)

Health care worker <.001
No 991 (98.7) 449 (93.3) 1440 (97.0)
Yes 13 (1.3) 32 (6.7) 45 (3.0)

Acute hypoxic respiratory failure (non-ARDS) <.001
No 131 (56.7) 152 (41.0) 283 (47.0)
Yes 100 (43.3) 219 (59.0) 319 (53.0)

Acute liver injury 24
No 195 (94.7) 274 (91.9) 469 (93.1)
Yes Il (53) 24 (8.1) 35 (69)

Acute myocardial infarction 4l
No 194 (95.1) 282 (96.6) 476 (96.0)
Yes 10 (4.9) 10 (34) 20 (4.0)

Acute renal failure requiring hemofiltration 92
No 195 (94.2) 281 (94.0) 476 (94.1)
Yes 12 (5.8) 18 (6.0) 30 (5.9)

Acute renal injury, no hemofiltration 57
N-Miss 1195 657 1852
No 169 (75.1) 237 (72.9) 406 (73.8)
Yes 56 (24.9) 88 (27.1) 144 (26.2)

ARDS 08
No 187 (90.8) 260 (85.5) 447 (87.6)
Yes 19 (9.2) 44 (14.5) 63 (124)

Bacteremia 76
No 199 (97.5) 288 (98.0) 487 (97.8)
Yes 5(25) 6 (2.0) I (22)

Bacterial pneumonia 20
No 190 (92.7) 268 (89.3) 458 (90.7)
Yes 15 (7.3) 32 (10.7) 47 (9.3)

Cardiac arrest 66
No 198 (96.6) 286 (97.3) 484 (97.0)
Yes 7 (34) 8 (27) 15 (3.0)

Continued on next page
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TABLE 2. Continued

Control (n=1420)" COVID-19 (n=982)° Total (N=2402)" P value

Cardiac arrhythmia: atrial fibrillation 45
No 192 (91.9) 278 (93.6) 470 (92.9)
Yes 17 (8.1) 19 (64) 36 (7.1)

Cardiac arrhythmia: heart block 78
No 201 (99.5) 288 (99.3) 489 (99.4)
Yes | (0.5) 2 (07) 3 (0.6)

Cardiac arrhythmia: torsades de pointes 1.00
No 202 (100.0) 291 (100.0) 493 (100.0)

Cardiac arrhythmia: ventricular tachycardia 55
No 196 (97.5) 286 (98.3) 482 (98.0)
Yes 5(25) 5(17) 10 (2.0)

Myocarditis 71
No 200 (99.0) 289 (99.3) 489 (99.2)
Yes 2 (1.0) 2 (0.7) 4 (0.8)

Pneumothorax 79
No 202 (99.5) 291 (99.3) 493 (99.4)
Yes I (0.5) 2 (07) 3 (0.6)

Pleural effusion 9l
No 173 (96.1) 236 (96.3) 409 (96.2)
Yes 7 (39) 9 (3.7) 16 (3.8)

Rhabdomyolysis or myositis 07
No 201 (99.5) 285 (97.3) 486 (98.2)
Yes I (0.5) 8 (2.7) 9 (1.8)

Seizure 65
No 199 (98.5) 288 (99.0) 487 (98.8)
Yes 3 (1.5) 3 (1.0) 6(12)

Sepsis .70
No 187 (84.6) 266 (834) 453 (83.9)
Yes 34 (15.4) 53 (16.6) 87 (l6.1)

Shock 32
No 191 (91.4) 267 (88.7) 458 (89.8)
Yes 18 (8.6) 34 (11.3) 52 (102)

Stroke 64
No 200 (98.5) 286 (97.9) 486 (98.2)
Yes 3 (1.5) 6 (2.1) 9 (1.8)

2ARDS, acute respiratory distress syndrome.

°Only for subset of patients with REDCap data for each category.

“Values are reported as number (%). Boldface P values represent statistical significance.

9Reported numbers are lower than those used in the model development as only those patients in whom case report form data were completed are included here.

to aggregate electrocardiographic data into a  mayoclinicproceedings.org). The protocol
central research server for analysis. The was approved by Institutional Review
study was managed by an international Boards at each participating site, with
volunteer steering committee (Appendix 2, Mayo Clinic in Rochester, Minnesota,
available online at http://www.  serving as the coordinating site.
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TABLE 3. Estimated Model Performance Measured by Positive and Negative Predicative Values Over a Range

of COVID Prevalence Values

Disease ~ True cases Negative cases Positive predic- Negative predic- Expected positive Expected nega-

prevalence  (per 1000) (per 1000) tive value (%)

tive value (%) test results tive test results

1.0 10 990 Il 99.8 880 120
20 20 980 22 99.7 88| 119
50 50 950 55 99.1 884 16
10.0 100 900 1.0 982 889 Il
15.0 150 850 16.4 972 894 106
200 200 800 21.8 96.0 899 101
250 250 750 27.1 94.8 904 96
300 300 700 323 934 909 M
35.0 350 650 375 918 914 86
RESULTS Figure 1 (available online at http:/www.

Characteristics of the Patients and
Geographic Distribution

A total of 48,186 valid ECGs of 11,770 pa-
tients were included from 28 participating
sites in 12 countries across 4 continents
(Figure 1). There were 15,117 ECGs ob-
tained from 4419 controls (mean 3.4+7.1
per patient). An additional 32,971 ECGs
were obtained from 7340 COVID-
19—positive  patients (4.5£5.8), with
13,247 obtained close to the time of positive
PCR test result (2 days before and up to 14
days after). Characteristics of patients from
REDCaps are in Table 2.

Because of data format issues, 4647
ECGs from 1 site were excluded . An addi-
tional 1028 ECGs had a maximum absolute
amplitude of more than 5 mV and were
excluded because of potential data quality is-
sues (examples in Supplement 3, available
online at http://www.mayoclinicproceedings
.org). There were 791 ECGs from 196
COVID-positive patients excluded because
of a missing PCR date, and 4710 ECGs
from COVID-positive patients collected
more than 14 days after the index PCR
were excluded from the main analysis as pre-
specified. The final analyzed cohort con-
sisted of 37,131 ECGs from 10,762
patients, with 13,247 ECGs labeled COVID
positive. The distribution of WHO symptom
severity scores at the time of index ECG
from the 4392 patients in whom the score
was recorded is shown in Supplemental

mayoclinicproceedings.org).

Network Performance: 12 Leads, 6 Leads,
and 1 Lead

Based on the study population prevalence of
34.9%, the AUC was 0.767 (95% CI, 0.756 to
0.778) for the 12-lead AI-ECG in identifying
acute COVID-19 infection. The model had a
sensitivity of 98.0%, specificity of 10.2%,
PPV of 36.7%, and NPV of 90.5% and F,
score of 53.4%. The AUC for the 6-lead algo-
rithm was 0.754 (95% CI, 0.742 to 0.765),
with sensitivity of 97.9%, specificity of
7.8%, PPV of 36.1%, and NPV of 87.2%
and F; score of 52.7%. Finally, the single-
lead model resulted in an AUC of 0.745
(95% CI, 0.733 to 0.756) with a sensitivity
of 98.5%, specificity of 6.5%, PPV of
35.9%, and NPV of 89.1% (Figure 2B).

To better understand performance, the
model was reevaluated by enriching the con-
trol population in the testing set with addi-
tional patients to vary the disease
prevalence in the testing set. The AUC in
the enriched cohort using prevalence of 5%
was 0.780 (95% CI, 0.771 to 0.790), with
98.0% sensitivity and 12.1% specificity; the
NPV is estimated to be 99.2%. With a
COVID prevalence of 5% (the Centers for
Disease Control and Prevention designation
for red, or the point at which more aggres-
sive social restrictions may be needed), for
1000 patients screened, 116 would be reas-
sured of not being infected. Table 3 presents

Mayo Clin Proc. ® August 2021;96(8):2081-2094 m https://doi.org/10.1016/j.mayocp.2021.05.027
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additional estimates of the test performance
over a range of disease prevalences.

Serial Electrocardiographic Analysis in
Patients With COVID-19

For COVID-19 patients who had ECGs avail-
able before the index diagnosis, the average
network output of their pre—COVID-19
ECGs was similar to that of the control cohort,
whereas the distribution of scores after diag-
nosis was markedly shifted toward larger
values, as would be expected on the basis of
the AUC for the model (Figure 3A). Among
321 patients with serial ECGs between —2
and 14 days of diagnosis (2657 ECGs), there
was gradual rise in the model output
(beta=0.0033/d; P=.002; Supplemental
Figure 2, available online at http:/www.
mayoclinicproceedings.org). During a longer
time, a general decrease in the network output
was observed up to more than 2 months after
their index diagnosis (Figure 3B). There was
nonsignificant trend toward higher network
scores in patients with higher index WHO
symptom severity scores (Figure 4). Consis-
tent with this finding, there was a trend toward
higher network scores in inpatients vs outpa-
tients (Supplemental Figure 3, available online
at http://www.mayoclinicproceedings.org).

Impact of Specific Electrocardiographic
Features on Network Prediction

Given the anecdotal observation that
elevated heart rate at the time of diagnosis
might predict infection, we sought to eval-
uate whether specific heart rate ranges
among the broader ECG cohort had an
impact on overall model accuracy. Specif-
ically, the network was validated against
ECGs within specific heart rate ranges (eg,
70 to 80, 80 to 90), and no significant rela-
tionship to model performance was observed
(Supplemental Figure 4, available online at
http://www.mayoclinicproceedings.org).

DISCUSSION

Main Findings

We found that patients infected with SARS-
CoV-2 develop electrocardiographic changes
identified by the AI-ECG. If validated

Mayo Clin Proc. ® August 2021;96(8):2081-2094 m https://doi.org/10.1016/j.mayocp.2021.05.027
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are violin plots that indicate the relative proportion of patients composing
the final mean and median for each group. B, Serial network scores over
time (see text for details). Shown is the average network score for individual
groups of patients who had multiple ECGs during follow-up (before index
COVID- 19 diagnosis and up to more than 2 months after). Presented are
violin plots with superimposed box plots. The violin plots provide a visual of
the density (relative frequency of values) over the range of the values
observed, with the larger width indicating an increased frequency. The box
plot shows the lower quartile, median, and upper quartile of the distribution.

prospectively, these may permit the AI-
enhanced ECG to be used as a screening
test to exclude acute infection. Specifically,
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FIGURE 4. Shown is the change in mean network score among electro-
cardiograms available for patients according to their World Health Orga-
nization (WHO) severity score. Higher severity scores were associated with
a statistically significant higher detection score.
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assuming a population with 5% coronavirus
infection, the NPV of the electrocardio-
graphic screen was 99.2%, which might
enable 12% of individuals to proceed
without any additional screening. With addi-
tional prospective network training and
coupling to data from a single PCR test,
the number of passed tests may further in-
crease. Through identifying those at low
risk of active infection, it can further help
in identifying those patients in whom a ge-
netic or antigen-based COVID-19 test may
be useful, independent of symptoms, and
thus serve as an integral part of a cascaded
testing regimen. This proof-of-concept,
retrospective analysis demonstrates biologic
plausibility, in support of prospective

studies.

Importantly, we selected a point on the
receiver operating characteristic curve with

a high sensitivity and low specificity
(Table 4) to permit infection exclusion
rather than inclusion. This has important
practical implications in that the test output
is best considered negative (no infection) or
indeterminate (further testing needed).
Thus, AI-ECG COVID screening applied in
this manner must be part of tiered testing
that includes PCR point-of-care testing.
Whereas this first iteration of the AI-ECG
COVID screen is a global test, applied in a
similar manner to all individuals, in future
iterations, the AI-ECG output could be
coupled to the result of a home PCR test to
identify a given individual's COVID-
negative AI-ECG signature. Such an
approach, if wvalidated, would further
enhance the AI-ECG COVID screen
performance.

This work used 12-lead ECGs, making
these findings particularly useful in the
clinic or hospital. However, we found that
the AI-ECG worked with use of only 1 lead
or 6 leads. Given that the AI-ECG may be ac-
quired with smartphone-enabled electrodes
to permit data acquisition in nearly any envi-
ronment without disrobing, that no body
fluids or reagents are needed for the test,
and that it can be performed in less than
30 seconds, with proper validation such a
test may allow health care systems, busi-
nesses, and societies at large to efficiently
and effectively mitigate exposure risk
through a readily scalable, noninvasive,
real-time, low-cost test.

Such a noninvasive method to detect
acute but potentially subclinical infection is
of particular importance, given the pro-
longed incubation period (10 to 14 days)
and the large proportion of patients who
remain asymptomatic but potentially infec-
tious.'””” While PCR testing continues to
evolve, allowing at-home or saliva tests,
most still require an unpleasant (and poten-
tially difficult to self-administer) nasal swab
or a prescription from a clinician and thus
face challenges for broad, societal screening.
Furthermore, the turnaround time on PCR
testing for COVID-19 ranges from 15 mi-
nutes to more than 48 hours, depending on
the assay and testing facility. An immediate,
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TABLE 4. Diagnostic Performance at Candidate

Thresholds

Threshold Sensitivity (%) Specificity (%)
044 70.15 7044
0.05 9951 4.65
0.10 97.63 11.90
0.15 94.99 20.57
0.20 91.83 3040
0.25 88.52 40.36
0.30 84.04 49.27
0.35 79.34 58.00
0.40 74.37 6547
045 68.80 71.62
0.50 62.74 7751
0.55 56.00 8290
0.60 48.70 8742
0.65 40.12 91.13
0.70 31.80 9433
0.75 23.64 96.39
0.80 15.66 98.06
0.85 873 99.24
0.90 3.12 99.74
0.95 045 100.00

accurate, point-of-care “rule out” test would
allow a portion of the population to continue
to engage in society (whether attending clas-
ses at school, visiting restaurants, or going
into work). The finding that the AI-ECG per-
forms well with only 6 leads or a single lead
suggests that currently available
smartphone-enabled form factors may be
used for screening. Such devices may be
sanitized quickly and do not require removal
of clothing or adhesive patches and are inex-
pensive enough to permit individual owner-
ship. This approach could substantially
improve on current entryway screening
techniques, such as questionnaires and tem-
perature assessment, which have a limited
performance profile.”"**

Impact of COVID-19 on the ECG

Coronaviruses may have a direct impact on
both cardiac function and electrophysi-
ology.”” Investigators have demonstrated
that rabbit coronavirus infection may result
in several electrocardiographic changes,

including ST-segment abnormalities, rhythm
disturbances, and conduction defects that
appear to be secondary to the myocardial
disease induced.” Specific to COVID-19, it
has also previously been demonstrated that
activation of ACE2 may have a direct impact
on repolarization vis-a-vis the QT interval,
with ACE2 activation also shortening the
cardiac action potential in rat and other ani-
mal models.”"*> COVID-19 infection has ef-
fects on the QT interval, independent of
potential QT-prolonging agents.”>*" More-
over, COVID-19 infection results in a
plethora of ubiquitous systemic and cellular
changes, including severe inflammation and
RAS activation, known to affect cardiac repo-
larization. Thus, it stands to reason that
acute COVID-19 infection may have a direct
impact on the ECG, in subtle, multifactorial
ways. Acute electrocardiographic changes
may result from a combination of compensa-
tory changes associated with infections in
general (eg, sinus tachycardia), secondary ef-
fects on cardiac structure and hemody-
namics due to respiratory compromise (eg,
right ventricular enlargement or decrease in
function), or direct interaction of COVID-
19 with the ACE2 receptor (eg, evidence of
myocardial injury, inflammation, or changes
in ventricular repolarization). Thus, such
electrocardiographic changes may help in
risk stratifying for potential active COVID-
19 infection.

Impact of Disease Prevalence

An important consideration in this study is
the impact of prevalence on the NPV and
PPV (Table 3). At a prevalence of 33%,
which may be reflective of the most severe
spikes during the course of the pandemic,
the NPV of the algorithm was 95%. At a
lower prevalence of 10%, this increased to
more than 99%. In making an effort to use
this algorithm clinically, it will be important
to consider the population prevalence in the
context of result interpretation.

Limitations

It is possible that the presence of fever or
acute respiratory disturbances, irrespective
of causative organism or mechanism, may
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be driving the network beyond any direct ef-
fects attributable to the SARS-CoV-2 virus.
Further research comparing ECGs from pa-
tients with other types of infectious disease
(eg, influenza) and COVID-19 may help
elaborate this. However, a rapid screen for
active infection may prove useful irrespec-
tive of cause, and the model performed simi-
larly well across a range of heart rates. Most
patients have an ECG recorded in associa-
tion with an emergency department visit or
hospitalization. Although many patients
were not hospitalized (Figure 4), we do not
know how many ECGs were obtained in an
emergency department. Whether this test
can be used to screen outpatients with min-
imal or no symptoms requires a prospective
study. Given the heterogeneity of the popu-
lation of patients, it is possible that the use
of drugs that have an impact on the ECG
(eg, hydroxychloroquine) may also have
affected network output. However, the
diverse global population receiving a wide
range of therapies and treatments enhances
network robustness and mitigates potential
biases. Information about drug use at the
time of ECG acquisition was not available
for analysis. Clinical characteristics for
many patients were not available, particu-
larly for the controls—a consequence of per-
forming an unfunded study carried out by
medical volunteers in the midst of a
pandemic and of international privacy regu-
lations. The fact that some controls were ob-
tained from patients 2 days before a COVID-
positive PCR test result raises the possibility
that some controls may have been infected.
This may weaken test performance. Other
control ECGs were obtained before
September 2019, a different time period,
potentially introducing confounding or
other bias.

A general limitation with neural networks
is the lack of explainability, in that the spe-
cific electrocardiographic features affecting
output are not known, with the theoretical
concern that methods of data acquisition or
testing may be susceptible to systematic er-
ror. We were unable to identify any single
dominant feature that robustly characterized
network performance. Nonetheless, the

reproducible performance across populations
from diverse geographies suggests that the
tool is robust and could be appropriately
used. In addition, whereas PCR is the current
standard of care for identifying SARS-CoV-2
infection, the sensitivity is estimated at only
70%, and thus it is unclear how the ECG
would perform among infected patients
whose PCR test result is negative.”” Finally,
spectrum bias is a possibility in our cohort.
There were few asymptomatic patients in
the training and validation sets, so
further validation of the algorithm on a
nonhospitalized or asymptomatic population
is necessary.

A practical challenge for the analysis was
developing a statistical plan to estimate the
confidence intervals for measures of diag-
nostic performance, particularly receiver
operating characteristic AUC, with a wide
range of cluster sizes. In particular, across
all 48,186 ECGs available for analysis, clus-
ter sizes (ie, multiple ECGs) ranged from 1
to 133, with a median of 2 and a mean of
4. Thus, whereas there was potential for
overestimation of the precision with the
data (ie, confidence intervals being too nar-
row), this likelihood would be low consid-
ering that the intraclass correlation
coefficient of the model predictions was
0.57, and the change in the standard error
of a proportion changes little beyond a sam-
ple size of 2000. Conservatively, a single
representative ECG could be selected for
each person and the precision of estimated
confidence intervals would be less than
+1.3 percentage point (calculation assumes
an effective sample size of 6000 and a pro-
portion of 0.50). This relative range of preci-
sion was observed broadly over many of the
diagnostic performance measures tabulated
for this study. Given that this work repre-
sents the primary development of the algo-
rithm and validation studies would be
required to use the algorithm in practice,
the primary tables and text focus on point
estimates.

CONCLUSION
Infection with SARS-CoV-2 results in electro-
cardiographic changes that may permit the
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Al-enhanced ECG to be used as a screening
test with a high NPV (99.2%). This may permit
the development of electrocardiography-
based tools to rapidly screen individuals for
pandemic control, especially in a clinic or hos-
pital setting. Development of mobile
technology—enabled AI-ECGs may have
broader implications that may enable resump-
tion of normal operations across society.
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